Practical Sketching-Based Randomized Tensor Ring Decomposition

Yajie Yu^{a, b} Hanyu Li^{a, c}

^a Chongqing University

b zqyu@cqu.edu.cn

c hyli@cqu.edu.cn, lihy.hy@gmail.com

CQSIAM, June 11, 2022

Outline

- Introduction
 - Tensor decompositions
 - Algorithms for TR decomposition
 - "Sketching"
- TR-SRFT-ALS
 - Motivations
 - New findings
 - Algorithm and theoretical analysis
- TR-TS-ALS
 - New findings
 - Algorithm and theoretical analysis
- Mumerical Results
 - Synthetic data
 - Real data
- Conclusions

Outline

- Introduction
 - Tensor decompositions
 - Algorithms for TR decomposition
 - "Sketching"
- 2 TR-SRFT-ALS
 - Motivations
 - New findings
 - Algorithm and theoretical analysis
- 3 TR-TS-ALS
 - New findings
 - Algorithm and theoretical analysis
- 4 Numerical Results
 - Synthetic data
 - Real data
- 5 Conclusions

Tensor

Figure 1: Graphical representation of multiway array (tensor) data.

Tensor

Figure 2: A 3rd-order tensor with entries, slices and fibers.

Yajie Yu (CQU) RAND-TR 4/58

CP & Tucker decompositions

- CANDECOMP/PARAFAC (CP) decomposition.
 - The CP tensor decomposition aims to approximate an order-N tensor as a sum of R rank-one tensors;
 - $\mathcal{X} \approx \tilde{\mathcal{X}} = \sum_{r=1}^{R} \mathbf{a}_r^{(1)} \circ \mathbf{a}_r^{(2)} \circ \cdots \circ \mathbf{a}_r^{(N)} = [[\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \cdots, \mathbf{A}^{(N)}]];$
 - ullet $\mathcal{O}\left(NIR\right)$ parameters: is linear to the tensor order N.
- Tucker decomposition
 - The Tucker decomposition decomposes a tensor into a core tensor multiplied (or transformed) by a matrix along each mode;
 - $\mathcal{X} \approx \tilde{\mathcal{X}} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \cdots \times_N \mathbf{A}^{(N)} = [[\mathcal{G}; \mathbf{A}^{(1)}, \cdots, \mathbf{A}^{(N)}]];$
 - ullet $\mathcal{O}\left(NIR+R^{N}
 ight)$ parameters: is exponential to the tensor order N.
- Some limitations
 - CP Its optimization problem is difficult; it is difficult to find the optimal solution and CP-rank (NP-hard);
- Tucker Its number of parameters is exponential to tensor order. (Curse of Dimensionality)

CP & Tucker decompositions

- CANDECOMP/PARAFAC (CP) decomposition.
 - The CP tensor decomposition aims to approximate an order-N tensor as a sum of R rank-one tensors;
 - $\mathcal{X} \approx \tilde{\mathcal{X}} = \sum_{r=1}^{R} \mathbf{a}_r^{(1)} \circ \mathbf{a}_r^{(2)} \circ \cdots \circ \mathbf{a}_r^{(N)} = [[\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \cdots, \mathbf{A}^{(N)}]];$
 - $\mathcal{O}\left(NIR\right)$ parameters: is linear to the tensor order N.
- Tucker decomposition
 - The Tucker decomposition decomposes a tensor into a core tensor multiplied (or transformed) by a matrix along each mode;
 - $\mathcal{X} \approx \tilde{\mathcal{X}} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \cdots \times_N \mathbf{A}^{(N)} = [[\mathcal{G}; \mathbf{A}^{(1)}, \cdots, \mathbf{A}^{(N)}]];$
 - $\mathcal{O}\left(NIR+R^N\right)$ parameters: is exponential to the tensor order N.
- Some limitations
 - CP Its optimization problem is difficult; it is difficult to find the optimal solution and CP-rank (NP-hard);
- Tucker Its number of parameters is exponential to tensor order. (Curse of Dimensionality)

CP & Tucker decompositions

- CANDECOMP/PARAFAC (CP) decomposition.
 - The CP tensor decomposition aims to approximate an order-N tensor as a sum of R rank-one tensors;
 - $\mathcal{X} \approx \tilde{\mathcal{X}} = \sum_{r=1}^{R} \mathbf{a}_r^{(1)} \circ \mathbf{a}_r^{(2)} \circ \cdots \circ \mathbf{a}_r^{(N)} = [[\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \cdots, \mathbf{A}^{(N)}]];$
 - $\mathcal{O}\left(NIR\right)$ parameters: is linear to the tensor order N.
- Tucker decomposition
 - The Tucker decomposition decomposes a tensor into a core tensor multiplied (or transformed) by a matrix along each mode;
 - $\mathcal{X} \approx \tilde{\mathcal{X}} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \cdots \times_N \mathbf{A}^{(N)} = [[\mathcal{G}; \mathbf{A}^{(1)}, \cdots, \mathbf{A}^{(N)}]];$
 - ullet $\mathcal{O}\left(NIR+R^{N}
 ight)$ parameters: is exponential to the tensor order N.
- Some limitations
 - CP Its optimization problem is difficult; it is difficult to find the optimal solution and CP-rank (NP-hard);

Tucker Its number of parameters is exponential to tensor order. (Curse of Dimensionality)

Tensor Train (TT) decomposition

Figure 3: TT/MPS decomposition of an N-th order tensor \mathcal{X} .

Slice representation:

$$\mathcal{X}(i_1,\cdots,i_N) = \mathbf{G}_1(i_1)\mathbf{G}_1(i_2)\cdots\mathbf{G}_N(i_N)$$

Yajie Yu(CQU) RAND-TR 6/58

Tensor Train (TT) decomposition

- Limitations of TT decomposition:
 - The constraint on TT-ranks, i.e., $R_1=R_{N+1}=1$, leads to the limited representation ability and flexibility;
 - TT-ranks always have a fixed pattern, i.e., smaller for the border cores and larger for the middle cores, which might not be the optimum for specific data tensor;
 - The multilinear products of cores in TT decomposition must follow a strict order such that the optimized TT cores highly depend on the permutation of tensor dimensions. Hence, finding the optimal permutation remains a challenging problem.

Yajie Yu (CQU) RAND-TR 7/58

Tensor Ring (TR) decomposition

Figure 4: TR decomposition of an N-th order tensor \mathcal{X} .

Yajie Yu (CQU) RAND-TR 8/58

Tensor Ring (TR) decomposition

Scalar representation:

$$\mathcal{X}(i_1,\dots,i_N) = \sum_{r_1,\dots,r_N=1}^{R_1,\dots,R_N} \prod_{n=1}^N \mathcal{G}_n(r_n,i_n,r_{n+1}); \quad R_1 = R_{N+1}$$

Slice representation:

$$\mathcal{X}(i_1,\cdots,i_N) = \mathsf{Tr}\{\mathbf{G}_1(i_1)\mathbf{G}_1(i_2)\cdots\mathbf{G}_N(i_N)\};$$

Tensor representation:

$$\mathcal{X} = \mathsf{Tr}\left(\mathbf{G}_1 \times^1 \mathbf{G}^2 \times^1 \cdots \times^1 \mathbf{G}_N\right);$$

ullet $\mathcal{O}\left(NIR^2\right)$ parameters: is linear to the tensor order N.

Yajie Yu (CQU) RAND-TR 9/58

Tensor Ring (TR) decomposition

- Advantages of TR decomposition:
 - TR model has a more generalized and powerful representation ability than TT model, due to relaxation of the strict condition $R_1=R_{N+1}=1$ in TT decomposition. In fact, TT decomposition can be viewed as a special case of TR model; Overcome the first limitation of TT decomposition.
 - TR model is more flexible than TT model, because TR-ranks can be equally distributed in the cores;

 Overcome the second limitation of TT decomposition.
 - The multilinear products of cores in TR decomposition don't need a strict order, i.e., the circular dimensional permutation invariance.

 Overcome the third limitation of TT decomposition.
 - TR-ranks are usually smaller than TT-ranks because TR model can be represented as a linear combination of TT decompositions whose cores are partially shared.
- Batselier K. (2018). The Trouble with Tensor Ring Decompositions. arXiv:1811.
 03813

Yajie Yu (CQU) RAND-TR 10/58

Classical algorithms for TR decomposition

Algorithm 1 TR-SVD [ZZX⁺16]

16: end function

```
1: function [\{\mathcal{G}_n\}_{n=1}^N, R_1, \cdots, R_N] = \text{TR-SVD}(\mathcal{X}, \varepsilon_p)
2:
3:
4:
5:
           Compute truncation threshold \delta_k for k=1 and k>1
           Choose one mode as the start point (e.g., the first mode) and obtain the 1-unfolding matrix X_{<1}
           Low-rank approximation by applying \delta_1-truncated SVD: \mathbf{X}_{\leq 1} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} + \mathbf{E}_1
           Split ranks R_1, R_2 by
                                                                   \min_{R_1,R_2} \|R_1 - R_2\|, \ s.t. \ \mathrm{rank}_{\delta_1}(\mathbf{X}_{<1>})
6:
7:
           G_1 \leftarrow \text{permute}(\text{shape}(\mathbf{U}, [I_1, R_1, R_2]), [2, 1, 3])
           \mathbf{G}^{>1} \leftarrow \mathsf{permute}(\mathsf{shape}(\mathbf{\Sigma}\mathbf{V}^\intercal, [R_1, R_2, \prod_{i=2}^d]), [2, 3, 1])
8:
9:
           for k=2,\cdots,N-1 do
                 \mathbf{G}^{>k-1} = \operatorname{reshape}(\mathbf{G}^{>k-1}, [R_k I_k, I_{k+1} \cdots I_N R_1])
10:
                   Compute \delta_h-truncated SVD:
                                                                                G^{>k-1} = U\Sigma V^{\mathsf{T}} + \mathbf{E}_{k}
11:
                   R_{k+1} \leftarrow \operatorname{rank}_{\delta_k} (\boldsymbol{\mathcal{G}}^{>k-1})
12:
                   \boldsymbol{\mathcal{G}}_k \leftarrow \operatorname{shape}(\mathbf{U}, [R_k, I_k, R_{k+1}])
13:
                   \mathcal{G}^{>k} \leftarrow \mathsf{shape}(\mathbf{\Sigma}\mathbf{V}^\intercal, [R_{k+1}, \prod_{i=k+1}^N I_i, R_1])
14:
              end for
15:
              return \mathcal{G}_1, \cdots, \mathcal{G}_N and the TR-rank R_1, \cdots, R_N.
```

Yajie Yu (CQU) RAND-TR 11/58

Classical algorithms for TR decomposition

Algorithm 2 TR-ALS [ZZX+16] ¹

```
1: function \{\mathcal{G}_n\}_{n=1}^N = \text{TR-ALS}(\mathcal{X}, R_1, \cdots, R_N)
  2:
              Initialize cores \mathcal{G}_2, \cdots, \mathcal{G}_N
  3:
             repeat
                    for n=1,\cdots,N do
  4:
                          Compute G_{[2]}^{\neq n} from cores
  5:
                          Update \boldsymbol{\mathcal{G}}_n = \arg\min_{\boldsymbol{\mathcal{Z}}} \|\mathbf{G}_{[2]}^{\neq n} \mathbf{Z}_{(2)}^\intercal - \mathbf{X}_{[n]}^\intercal \|_F
 6:
 7:
                    end for
  8:
             until termination criteria met
  g.
              return \mathcal{G}_1, \cdots, \mathcal{G}_N
10: end function
```

[ZZX⁺16] Zhao, Q., Zhou, G., Xie, S., & Zhang, L., Cichocki, A. (2016). Tensor Ring Decomposition. ArXiv:1606.05535.

Yajie Yu (CQU) RAND-TR 12/58

¹More details: (1) ALS with adaptive ranks and (2) block-wise ALS

Randomized algorithms for TR decomposition

Algorithm 3 rTR-ALS [YLCZ19]

```
1: function \{\mathcal{G}_n\}_{n=1}^N = \text{TR-RALS}(\mathcal{X}, R_1, \cdots, R_N, K_1, \cdots, K_N)
 2:
           for n=1,\cdots,N do
 3:
                 Create matrix \mathbf{M} \in \mathbb{R}_{i \neq n} I_i \times K_n following the Gaussian distribution.
 4:
                Compute \mathbf{Y} = \mathbf{X}_{(n)}\mathbf{M}
                                                                                                           random projection
 5:
                 [\mathbf{Q}_n, ] = QR(\mathbf{Y})
                                                                                             economy QR decomposition
 6:
                \mathcal{P} \leftarrow \mathcal{X} \times_n \mathbf{O}_n^\intercal
 7:
           end for
 8:
            Obtain TR factors [{m Z}_n] of {m P} by TR-ALS or TR-SVD
 9:
           for n=1,\cdots,N do
10:
                G_n = Z_n \times_2 Q_n
11:
           end for
12:
            return \mathcal{G}_1, \cdots, \mathcal{G}_N
13: end function
```

- [YLCZ19] Yuan, L., Li, C., Cao, J., & Zhao, Q. (2019). Randomized Tensor Ring Decomposition and its Application to Large-scale
- [ACP+20] Ahmadi-Asl, S., Cichocki, A., Phan, A. H., Asante-Mensah, M. G., Ghazani, M. M., Tanaka, T., & Oseledets, I. (2020). Randomized algorithms for fast computation of low rank tensor ring model. Machine Learning: Science and Technology, 2(1), 011001.

Yajie Yu (CQU) RAND-TR 13/58

Randomized algorithms for TR decomposition

Algorithm 4 TR-ALS-Sampled [MB21]

```
1: function \{\mathcal{G}_n\}_{n=1}^N = \text{TR-ALS-SAMPLED}(\boldsymbol{\mathcal{X}}, R_1, \cdots, R_N)
  2:
                Initialize cores G_2, \cdots, G_N
  3:
                Using the leverage scores to compute distributions \mathbf{p}^{(2)}, \cdots, \mathbf{p}^{(N)} without explicitly forming the subchain unfold
          matrix.
  4:
5:
6:
7:
                repeat
                     for n = 1, \dots, N do
                           Set sample size J
                           Draw sampling matrix \mathbf{S} \sim \mathcal{D}(J, \mathbf{q}^{\neq n})
                           Compute \hat{\mathcal{G}}^{\neq n}=\mathsf{SST}(\mathsf{idxs},\mathcal{G}_{n+1},\mathcal{G}_N,\mathcal{G}_1,\mathcal{G}_{n-1}) and \hat{\mathsf{G}}_{[2]}^{\neq n}
  9:
                           Compute \hat{\mathbf{X}}_{[n]}^{\mathsf{T}} = \mathbf{S}\mathbf{X}_{[n]}^{\mathsf{T}}
                           Update \mathcal{G}_n = \arg\min_{\mathcal{Z}} \|\hat{\mathbf{G}}_{[2]}^{\neq n} \mathbf{Z}_{(2)}^\intercal - \hat{\mathbf{X}}_{[n]}^\intercal\|_F
10:
11:
                           Update n-th distribution \mathbf{p}^{(n)}
                     end for
                until termination criteria met
                return \mathcal{G}_1, \cdots, \mathcal{G}_N
15: end function
```

[MB21] Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring decomposition. In International Conference on Machine Learning (pp. 7400-7411). PMLR.

Yajie Yu (CQU) RAND-TR 14/58

Randomized algorithms for TR decomposition

Algorithm 5 Sampled Subchain Tensor (SST) [MB21]

```
1: function \mathcal{G}_S^{\neq n} = \operatorname{SST}(\operatorname{idxs}, \mathcal{G}_{n+1}, \mathcal{G}_N, \mathcal{G}_1, \mathcal{G}_{n-1}) \triangleright \mathcal{G}_n \in \mathbb{R}^{R_n \times I_n \times R_{n+1}} \triangleright \operatorname{idxs} \in \mathbb{R}^{m \times (N-1)} is from the set of tuples \{i_{n+1}^{(j)}, \cdots, i_N^{(j)}, i_1^{(j)}, \cdots, i_{n-1}^{(j)}\} for j \in [m]
```

ightharpoonup idxs is retrieved from the sampling matrix $\mathbf{S} \in \mathbb{R}^{m \times \prod_{k \neq n} I_k}$ or the specific sampling with given probabilities

- 2: Let $\mathcal{G}_S^{\neq n}$ be a tensor of size $R_{n+1} \times m \times R_n$, where every lateral slice is an $R_{n+1} \times R_n$ identity matrix
- 3: **for** $k = n + 1, \dots, N, 1, \dots, n 1$ **do**
- 4: $oldsymbol{\mathcal{G}}_{(k)S}^{
 eq n} \leftarrow oldsymbol{\mathcal{G}}_k(:,\mathtt{idxs}(:,k),:)$
- 5: $\mathcal{G}_{S}^{\neq n} \leftarrow \mathcal{G}_{S}^{\neq n} \otimes_{2} \mathcal{G}_{(k)S}^{\neq n}$

 \triangleright see Definition 3.2 for \mathbb{R}_2 .

- 6: end for
- 7: return $\mathcal{G}_S^{\neq n}$
- 8: end function

Yajie Yu(CQU) RAND-TR 15 / 58

Some sketching techniques

 $\begin{cases} \mathsf{Sampling} & \mathsf{Uniform} \\ \mathsf{Importance} & \mathsf{Based \ on \ norm} \\ \mathsf{Based \ on \ leverage \ scores} \end{cases}$ $\mathsf{Randomized \ Algorithms} & \mathsf{Gaussian} & \mathsf{Kronecker \ Gaussian} \\ \mathsf{Frojection} & \mathsf{SRFT/SRHT} & \mathsf{Kronecker \ FJLT} \\ \mathsf{Khatri-Rao \ FJLT} & \mathsf{Khatri-Rao \ FJLT} \\ \mathsf{CountSketch} & \mathsf{TensorSketch} \\ \mathsf{Higher-order \ CountSketch} \end{cases}$

Yajie Yu(CQU) RAND-TR 16/58

SRFT

Definition 1.1 (SRFT)

The **SRFT** is constructed as a matrix of the form

$$\Phi = SFD$$
,

where

- $\mathbf{S} \in \mathbb{R}^{m \times N} = m$ random rows of the $N \times N$ identity matrix;
- $\mathcal{F} \in \mathbb{C}^{N \times N} =$ (unitary) discrete Fourier transform of dimension N;
- $\mathbf{D} \in \mathbb{R}^{N \times N} = \text{diagonal matrix with diagonal entries drawn uniformly from } \{+1, -1\}.$

Yajie Yu (CQU) RAND-TR 17/58

Kronecker SRFT (KSRFT)

Definition 1.2 (KSRFT)

The KSRFT is constructed as a matrix of the form

$$\mathbf{\Phi} = \mathbf{S} \left(\bigotimes_{j=D}^{1} \mathcal{F}_{j} \mathbf{D}_{j} \right),$$

where

- $\mathbf{S} \in \mathbb{R}^{m \times N} = m$ random rows of the $N \times N$ identity matrix with $N = \prod_{i=1}^D n_i$;
- $\mathcal{F}_j \in \mathbb{C}^{n_j \times n_j} =$ (unitary) discrete Fourier transform of dimension n_j ;
- $\mathbf{D}_j \in \mathbb{R}^{n_j \times n_j} = \text{diagonal matrix with diagonal entries drawn uniformly from } \{+1, -1\}.$
- [BBK18] Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized CP Tensor Decomposition. SIMAX, 39(2), 876-901.
- [JKW20] Jin, R., Kolda, T. G., & Ward, R. (2021). Faster Johnson-Lindenstrauss transforms via kronecker products. Information and Inference: A Journal of the IMA, 10(4), 1533-1562.

Yajie Yu (CQU) RAND-TR 18/58

CountSketch

Definition 1.3 (CountSketch)

The **CountSketch** is constructed as a matrix of the form

$$\Phi = \Omega D$$
,

where

- $\Omega \in \mathbb{R}^{m \times N} =$ a matrix with $\Omega(j,i) = 1$ if j = h(i), $\forall i \in [N]$ and $\Omega(j,i) = 0$ otherwise, where $h:[N] \to [m]$ is a hash map such that $\forall i \in [N]$ and $\forall j \in [m]$, $\Pr[h(i) = j] = 1/m$;
- $oldsymbol{\Phi}$ $\mathbf{D} \in \mathbb{R}^{N \times N} = ext{diagonal matrix}$ with diagonal entries drawn uniformly from $\{+1,-1\}$.

CW17] Clarkson K L, & Woodruff D P. (2017). Low-rank approximation and regression in input sparsity time. Journal of the ACM. 63(6), 1-45.

Yajie Yu (CQU) RAND-TR 19/58

TensorSketch

Definition 1.4 (TensorSketch)

The order N TensorSketch matrix $\mathbf{T} = \mathbf{\Omega}\mathbf{D} \in \mathbb{R}^{m \times \prod_{i=1}^{N} I_i}$ is defined based on two hash maps H and S defined below,

$$H: [I_1] \times [I_2] \times \cdots \times [I_N] \to [m]: (i_1, \dots, i_N) \mapsto \left(\sum_{n=1}^N (H_n(i_n) - 1) \mod m\right) + 1,$$

$$S: [I_1] \times [I_2] \times \cdots \times [I_N] \to \{-1, 1\} : (i_1, \dots, i_N) \mapsto \prod_{n=1}^N S_n(i_n),$$

where each H_n for $n \in [N]$ is a 3-wise independent hash map that maps $[I_n] \to [m]$, and each S_n is a 4-wise independent hash map that maps $[I_n] \to \{-1,1\}$. A hash map is k-wise independent if any designated k keys are independent random variables. Specifically, the two matrices Ω and D are defined based on H and S, respectively, as follows,

- $\bullet \quad \Omega \in \mathbb{R}^{m \times \prod_{i=1}^{N} I_i} \text{ is a matrix with } \Omega(j,i) = 1 \text{ if } j = H(i) \ \forall i \in \left[\prod_{i=1}^{N} I_i\right] \text{, and } \Omega(j,i) = 0 \text{ otherwise, } \right]$
- $\bullet \quad \mathbf{D} \in \mathbb{R}^{\prod_{i=1}^{N} I_i \times \prod_{i=1}^{N} I_i} \text{ is a diagonal matrix with } \mathbf{D}(i,i) = S(i).$

Above we use the notation $H(i)=H(\overline{i_1i_2\cdots i_N})$ and $S(i)=S(\overline{i_1i_2\cdots i_N})$, where $\overline{i_1i_2\cdots i_N}$ denotes the **big-endian convention**.

Yajie Yu (CQU) RAND-TR 20/58

Outline

- Introduction
 - Tensor decompositions
 - Algorithms for TR decomposition
 - "Sketching"
- TR-SRFT-ALS
 - Motivations
 - New findings
 - Algorithm and theoretical analysis
- 3 TR-TS-ALS
 - New findings
 - Algorithm and theoretical analysis
- 4 Numerical Results
 - Synthetic data
 - Real data
- 5 Conclusions

Motivation: CP-ALS

Classical CP

CP-ALS

$$\underset{\mathbf{A}_n}{\operatorname{arg\,min}} \|\mathbf{Z}^{(n)}\mathbf{A}_n^{\intercal} - \mathbf{X}_{(n)}^{\intercal}\|_F.$$

$$\mathbf{Z}^{(n)} = \mathbf{A}_N \odot \cdots \odot \mathbf{A}_{n+1} \odot \mathbf{A}_{n+1} \odot \cdots \odot \mathbf{A}_1.$$

Randomized CP in [BBK18] ²

Rand-CP

$$\underset{\mathbf{A}_n}{\arg\min} \| \mathbf{S} \left(\bigotimes_{j=N, j \neq n}^{1} \mathcal{F}_j \mathbf{D}_j \right) \mathbf{Z}^{(n)} \mathbf{A}_n^{\mathsf{T}} - \mathbf{S} \left(\bigotimes_{j=N, j \neq n}^{1} \mathcal{F}_j \mathbf{D}_j \right) \mathbf{X}_{(n)}^{\mathsf{T}} \|_F.$$

$$\hat{\mathbf{Z}}^{(n)} = \left(\bigotimes_{j=N, j \neq n}^{1} \mathcal{F}_{j} \mathbf{D}_{j} \right) \mathbf{Z}^{(n)} = \bigcirc_{j=N, j \neq n}^{1} (\mathcal{F}_{j} \mathbf{D}_{j} \mathbf{A}_{j}).$$

Yajie Yu (CQU) Rand-TR 22 / 58

²[BBK18] Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized CP Tensor Decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2), 876-901.

Ideas

Original problem: TR-ALS

$$\underset{\mathbf{G}_{n(2)}}{\arg\min} \|\mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\intercal} - \mathbf{X}_{[n]}^{\intercal} \|_{F}.$$
 (2.1)

Reduced problem: Sketched TR-ALS

$$\underset{\mathbf{G}_{n(2)}}{\arg\min} \left\| \mathcal{S} \mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^\intercal - \mathcal{S} \mathbf{X}_{[n]}^\intercal \right\|_F.$$

- Ideas
 - Avoid forming S explicitly.
 - Avoid forming $G_{[2]}^{\neq n}$ explicitly.
 - Avoid the classical matrix multiplication of S and $G_{[2]}^{\neq n}$ directly.

Yajie Yu (CQU) Rand-TR 23 / 58

New findings

1 Mixing the rows of $\mathbf{G}_{[2]}^{\neq n}$ is equivalent to mixing the lateral slides of $\boldsymbol{\mathcal{G}}^{\neq n}$, i.e., $\mathcal{S}\mathbf{G}_{[2]}^{\neq n} = (\mathcal{G}^{\neq n} \times_2 \mathcal{S})_{[2]}.$

Figure 5: Illustration of the transformation from Process I to Process II.

2 $\mathcal{G}^{\neq n}$ may be written as a Kronecker-like or KR-like product of TR-cores.

Yajie Yu (CQU) RAND-TR 24 / 58

New definition

Definition 2.1 (Subchain product)

Let $\mathcal{A} \in \mathbb{R}^{I_1 \times J_1 \times K}$ and $\mathcal{B} \in \mathbb{R}^{K \times J_2 \times I_2}$ be two 3-order tensors, and $\mathbf{A}(j_1)$ and $\mathbf{B}(j_2)$ be the j_1 -th and j_2 -th lateral slices of \mathcal{A} and \mathcal{B} , respectively. The mode-2 subchain product of \mathcal{A} and \mathcal{B} is a tensor of size $I_1 \times J_1 J_2 \times I_2$ denoted by $\mathcal{A} \boxtimes_2 \mathcal{B}$ and defined as

$$(\mathcal{A} \boxtimes_2 \mathcal{B})(\overline{j_1j_2}) = \mathcal{A}(j_1)\mathcal{B}(j_2).$$

That is, with respect to the correspondence on indices, the lateral slices of $\mathcal{A} \boxtimes_2 \mathcal{B}$ are the classical matrix products of the lateral slices of \mathcal{A} and \mathcal{B} . The mode-1 and mode-3 subchain products can be defined similarly.

Therefore, $G^{\neq n}$ can be rewritten as

$$\mathcal{G}^{\neq n} = \mathcal{G}_{n+1} \boxtimes_2 \cdots \boxtimes_2 \mathcal{G}_N \boxtimes_2 \mathcal{G}_1 \boxtimes_2 \cdots \boxtimes_2 \mathcal{G}_{n-1}.$$
 (2.2)

Yajie Yu (CQU) RAND-TR 25 / 58

$$egin{aligned} \mathcal{S}\mathbf{G}_{[2]}^{
eq n} &= (\mathcal{G}^{
eq n} imes_2 \mathcal{S})_{[2]} \ &= ((\mathcal{G}_{n+1} oxtimes_2 \cdots oxtimes_2 \mathcal{G}_N oxtimes_2 \mathcal{G}_1 oxtimes_2 \cdots oxtimes_2 \mathcal{G}_{n-1}) imes_2 \mathcal{S})_{[2]} \end{aligned}$$

Proposition 2.2

Let $\mathcal{A} \in \mathbb{R}^{I_1 \times J_1 \times K}$ and $\mathcal{B} \in \mathbb{R}^{K \times J_2 \times I_2}$ be two 3-order tensors, and $\mathbf{A} \in \mathbb{R}^{R_1 \times J_1}$ and $\mathbf{B} \in \mathbb{R}^{R_2 \times J_2}$ be two matrices. Then

$$(\boldsymbol{\mathcal{A}} \times_2 \mathbf{A}) \boxtimes_2 (\boldsymbol{\mathcal{B}} \times_2 \mathbf{B}) = (\boldsymbol{\mathcal{A}} \boxtimes_2 \boldsymbol{\mathcal{B}}) \times_2 (\mathbf{B} \otimes \mathbf{A}).$$

Yajie Yu (CQU) RAND-TR 26/58

- Choose the "S".
 - Let $S = \mathbf{S} \mathcal{F} \mathbf{D}$, where

$$\mathcal{F} = \left(\bigotimes_{j=n-1,\cdots,1,N,\cdots,n+1} \mathcal{F}_j \right), \ \mathbf{D} = \left(\bigotimes_{j=n-1,\cdots,1,N,\cdots,n+1} \mathbf{D}_j \right).$$

That is,

$$\mathcal{S} = \mathbf{S} \left(igotimes_{j=n-1,\cdots,1,N,\cdots,n+1} \mathcal{F}_j \mathbf{D}_j
ight).$$

Thus,

$$\underset{\mathbf{G}_{n(2)}}{\operatorname{arg\,min}} \left\| \mathbf{S} \mathcal{F} \mathbf{D} \mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\mathsf{T}} - \mathbf{S} \mathcal{F} \mathbf{D} \mathbf{X}_{[n]}^{\mathsf{T}} \right\|_{F}, \tag{2.3}$$

BBK18] Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized CP Tensor Decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2), 876-901.

Yajie Yu (CQU) RAND-TR 27/58

Details

• The first term in eq. (2.3), $\mathbf{S}\mathcal{F}\mathbf{DG}_{[2]}^{\neq n}$:

Step 1 (Mixing step) Using Proposition 2.2 and eq. (2.2)

$$egin{aligned} \hat{oldsymbol{\mathcal{G}}}^{
eq n} &= oldsymbol{\mathcal{G}}^{
eq n} imes_2 \mathcal{F} \mathbf{D} \ &= (oldsymbol{\mathcal{G}}_{n+1} imes_2 (\mathcal{F}_{n+1} \mathbf{D}_{n+1})) \boxtimes_2 \ &\cdots \boxtimes_2 (oldsymbol{\mathcal{G}}_N imes_2 (\mathcal{F}_N \mathbf{D}_N)) \boxtimes_2 (oldsymbol{\mathcal{G}}_1 imes_2 (\mathcal{F}_1 \mathbf{D}_1)) \boxtimes_2 \ &\cdots \boxtimes_2 (oldsymbol{\mathcal{G}}_{n-1} imes_2 (\mathcal{F}_{n-1} \mathbf{D}_{n-1})). \end{aligned}$$

i.e.
$$\mathcal{F}\mathbf{D}\mathbf{G}_{[2]}^{\neq n} = \hat{\mathbf{G}}_{[2]}^{\neq n}$$
.

Step 2 (Sampling step) According to the sampling method in Algorithm 5, we have

$$\begin{split} \hat{\boldsymbol{\mathcal{G}}}^{\neq n} \times_2 \mathbf{S} &= (\boldsymbol{\mathcal{G}}_{n+1} \times_2 (\mathbf{S}_{n+1} \boldsymbol{\mathcal{F}}_{n+1} \mathbf{D}_{n+1})) \mathbb{B}_2 \\ & \cdots \mathbb{B}_2 (\boldsymbol{\mathcal{G}}_N \times_2 (\mathbf{S}_N \boldsymbol{\mathcal{F}}_N \mathbf{D}_N)) \mathbb{B}_2 (\boldsymbol{\mathcal{G}}_1 \times_2 (\mathbf{S}_1 \boldsymbol{\mathcal{F}}_1 \mathbf{D}_1)) \mathbb{B}_2 \\ & \cdots \mathbb{B}_2 (\boldsymbol{\mathcal{G}}_{n-1} \times_2 (\mathbf{S}_{n-1} \boldsymbol{\mathcal{F}}_{n-1} \mathbf{D}_{n-1})), \end{split}$$

using Proposition 3.3, we have
$$\mathbf{S} = \left(\bigodot_{\substack{j=n-1,\cdots,1,\ N,\cdots,n+1}} \mathbf{S}_j^\intercal \right)^\intercal$$

[MB21] Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring decomposition. In International Conference on Machine Learning (pp. 7400-7411). PMLR.

Yajie Yu (CQU) RAND-TR 28/58

- The second term in eq. (2.3), $\mathbf{S}\mathcal{F}\mathbf{D}\mathbf{X}_{[n]}^{\intercal}$:
 - Let $\hat{\mathcal{X}} = \mathcal{X} \times_1 \mathcal{F}_1 \mathbf{D}_1 \times_2 \mathcal{F}_2 \mathbf{D}_2 \cdots \times_N \mathcal{F}_N \mathbf{D}_N$.
 - The second term is equivalent to

$$\mathbf{S}\hat{\mathbf{X}}_{[n]}^{\intercal}(\mathbf{D}_{n}\mathcal{F}_{n}^{*})^{\intercal}.$$

Rewrite eq. (2.3) as

$$\operatorname*{arg\,min}_{\mathbf{G}_{n(2)}} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \mathbf{G}_{n(2)}^\intercal - \left(\mathbf{S} \hat{\mathbf{X}}_{[n]}^\intercal \right) (\mathbf{D}_n \mathcal{F}_n^*)^\intercal \|_F.$$

Yajie Yu (CQU) RAND-TR 29/58

Algorithm 6 TR-SRFT-ALS (Proposal)

```
1: function \{\mathcal{G}_n\}_{n=1}^N = \text{TR-SRFT-ALS}(\boldsymbol{\mathcal{X}}, R_1, \cdots, R_N, m) \qquad \triangleright \, \boldsymbol{\mathcal{G}}_n \in \mathbb{R}^{R_n \times I_n \times R_{n+1}} \colon \boldsymbol{\mathcal{X}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}
                                                                                                                                                                                                 \triangleright (R_1, \cdots, R_N) are the TR-ranks
                                                                                                                                                                                                          \triangleright m is the uniform sampling size
   2:
3:
                     Initialize cores \mathcal{G}_2, \cdots, \mathcal{G}_N
                     Define random sign-flip operators \mathbf{D}_i and FFT matrices \mathcal{F}_i, for j \in [N]
4:
5:
6:
7:
8:
9:
10:
                     Mix cores: \hat{\boldsymbol{\mathcal{G}}}_n \leftarrow \boldsymbol{\mathcal{G}}_n \times_2 \mathcal{F}_n \mathbf{D}_n, for n = 2, \dots, N
                     Mix tensor: \hat{\mathcal{X}} \leftarrow \mathcal{X} \times_1 \mathcal{F}_1 \mathbf{D}_1 \times_2 \mathcal{F}_2 \mathbf{D}_2 \cdots \times_N \mathcal{F}_N \mathbf{D}_N
                     repeat
                            for n = 1, \dots, N do
                                    Define sampling operator \mathbf{S} \in \mathbb{R}^{m 	imes \prod j 
eq n} \ ^{I} j
                                    Retrieve idxs from S
                                    \hat{\boldsymbol{\mathcal{G}}}_{S}^{\neq n} = \mathsf{SST}(\mathsf{idxs}, \hat{\boldsymbol{\mathcal{G}}}_{n+1}, \cdots, \hat{\boldsymbol{\mathcal{G}}}_{N}, \hat{\boldsymbol{\mathcal{G}}}_{1}, \cdots, \hat{\boldsymbol{\mathcal{G}}}_{n-1})
11:
                                    \hat{\mathbf{X}}_{S[n]}^{\intercal} \leftarrow \mathbf{S}\hat{\mathbf{X}}_{[n]}^{\intercal} (\mathbf{D}_{n}\mathcal{F}_{n}^{*})^{\intercal}
12:
                                    Update \mathcal{G}_n = \arg\min_{\mathcal{Z}} \|\hat{\mathbf{G}}_{S[2]}^{\neq n} \mathbf{Z}_{(2)}^{\intercal} - \hat{\mathbf{X}}_{S[n]}^{\intercal}\|_F subject to \mathcal{G}_n being real-valued
13:
                                    \hat{\boldsymbol{\mathcal{G}}}_n \leftarrow \boldsymbol{\mathcal{G}}_n \times_2 \mathcal{F}_n \mathbf{D}_n
                            end for
                     until termination criteria met
                     return \mathcal{G}_1, \cdots, \mathcal{G}_N
17: end function
```

•

$$\operatorname*{arg\,min}_{\mathbf{G}_{n(2)}} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \mathbf{G}_{n(2)}^\intercal - \left(\mathbf{S} \hat{\mathbf{X}}_{[n]}^\intercal \right) (\mathbf{D}_n \mathcal{F}_n^*)^\intercal \|_F.$$

Rewrite it as

$$\underset{\mathbf{G}_{n(2)}}{\arg\min} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \mathbf{G}_{n(2)}^{\intercal} (\mathcal{F}_{n} \mathbf{D}_{n})^{\intercal} - \mathbf{S} \hat{\mathbf{X}}_{[n]}^{\intercal} \|_{F},$$

ullet Let $\hat{\mathbf{G}}_{n(2)} = \mathcal{F}_n \mathbf{D}_n \mathbf{G}_{n(2)}$

$$\underset{\hat{\mathbf{G}}_{n(2)}}{\arg\min} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \hat{\mathbf{G}}_{n(2)}^{\intercal} - \left(\mathbf{S} \hat{\mathbf{X}}_{[n]}^{\intercal} \right) \|_{F}.$$

• Solve the problem above to get $\hat{\mathcal{G}}_n$ first and then recover the original cores \mathcal{G}_n .

Yajie Yu (CQU) RAND-TR 31/58

Algorithm

Algorithm 7 TR-SRFT-ALS-Premix (Proposal)

```
1: function \{\mathcal{G}_n\}_{n=1}^N = \text{TR-SRFT-ALS-PREMIX}(\boldsymbol{\mathcal{X}}, R_1, \cdots, R_N, m)
             \boldsymbol{\mathcal{X}} \in \mathbb{C}^{I_1 \times \cdots \times I_N}
  2:
3:
4:
5:
6:
7:
8:
                    Define random sign-flip operators \mathbf{D}_i and FFT matrices \mathcal{F}_i, for j \in [N]
                    Mix tensor: \hat{\mathcal{X}} \leftarrow \mathcal{X} \times_1 \mathcal{F}_1 \mathbf{D}_1 \times_2 \mathcal{F}_2 \mathbf{D}_2 \cdots \times_N \mathcal{F}_N \mathbf{D}_N
                    Initialize cores \hat{\boldsymbol{G}}_2, \cdots, \hat{\boldsymbol{G}}_N
                    repeat
                            for n = 1, \dots, N do
                                    Define sampling operator \mathbf{S} \in \mathbb{R}^{m 	imes \prod j 
eq n} \ ^{I_j}
                                    Retrieve idxs from S
                                    \hat{\boldsymbol{\mathcal{G}}}_{S}^{\neq n} = \mathsf{SST}(\mathsf{idxs}, \hat{\boldsymbol{\mathcal{G}}}_{n+1}, \cdots, \hat{\boldsymbol{\mathcal{G}}}_{N}, \hat{\boldsymbol{\mathcal{G}}}_{1}, \cdots, \hat{\boldsymbol{\mathcal{G}}}_{n-1})
10:
                                    \hat{\mathbf{X}}_{S[n]}^{\intercal} \leftarrow \mathbf{S}\hat{\mathbf{X}}_{[n]}^{\intercal}
11:
                                    Update \hat{\boldsymbol{\mathcal{G}}}_n = \arg\min_{\boldsymbol{\mathcal{Z}}} \|\hat{\mathbf{G}}_{S[2]}^{\neq n} \mathbf{Z}_{(2)}^{\intercal} - \hat{\mathbf{X}}_{S[n]}^{\intercal}\|_F
12:
13:
14:
                            end for
                    until termination criteria met
                    for n=1,\cdots,N do
15:
                            Unmix cores: \boldsymbol{\mathcal{G}}_n \leftarrow \hat{\boldsymbol{\mathcal{G}}}_n \times_2 \mathbf{D}_n \mathcal{F}_n^*
16:
17:
                    end for
                    return G_1, \dots, G_N
18: end function
```

```
\triangleright \boldsymbol{\mathcal{G}}_n \in \mathbb{C}^{R_n \times I_n \times R_{n+1}}
```

 $\triangleright (R_1, \cdots, R_N)$ are the TR-ranks $\triangleright m$ is the uniform sampling size

```
Yajie Yu (CQU)
                                           Rand-TR
                                                                                                     32 / 58
```

Some remarks

- Like the algorithms for CP decomposition given in [BBK18]³, but with new tensor product and property;
- Compared with the method in [MB21]⁴, our method may work better for some special data, such as for the data with core tensors may include outliers:
- $\mathbf{F}_i \mathbf{D}_i$ can be any suitable randomized matrices: CountSketch, rTR-ALS⁵. unified form.

Yajie Yu (CQU) RAND-TR 33 / 58

³Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized CP Tensor Decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2), 876-901

⁴Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring decomposition. In International Conference on Machine Learning (pp. 7400-7411). PMI R.

⁵Yuan, L., Li, C., Cao, J., & Zhao, Q. (2019). Randomized Tensor Ring Decomposition and its Application to Large-scale Data Reconstruction. ICASSP, 2127-2131.

Illustration

Figure 6: Illustration of how to efficiently construct $\mathcal{G}^{\neq n} \times_2 \mathcal{S}$ by sketching the core tensors.

Yajie Yu (CQU) RAND-TR 34/58

Theoretical analysis

Theorem 2.3

For the subchain unfolded matrix $\mathbf{G}_{[2]}^{\neq n} \in \mathbb{R}^{\prod_{j \neq n} I_j \times R_n R_{n+1}}$ and $\mathbf{X}_{[n]}^\intercal \in \mathbb{R}^{\prod_{j \neq n} I_j \times I_n}$ in eq. (2.1), denote $rank(\mathbf{G}_{[2]}^{\neq n}) = r \leq R_n R_{n+1}$ and fix $\varepsilon, \eta \in (0,1)$ such that $\prod_{j \neq n} I_j \lesssim 1/\varepsilon^r$ with integer $r \geq 2$. Then a sketching matrix S used in Algorithm 6 and Algorithm 7, i.e.,

$$\mathcal{S} = \left(\bigodot_{\substack{j=n-1,\cdots,1,\\N,\cdots,n+1}} \mathbf{S}_j^\intercal \right)^\intercal \left(\bigotimes_{\substack{j=n-1,\cdots,1,\\N,\cdots,n+1}} (\mathcal{F}_j \mathbf{D}_j) \right) \in \mathbb{C}^{m \times \prod_{j \neq n} I_j}$$

with

$$m = \mathcal{O}\left(\varepsilon^{-1} r^{2(N-1)} \log^{2N-3}(\frac{r}{\varepsilon}) \log^4(\frac{r}{\varepsilon} \log(\frac{r}{\varepsilon})) \log \prod_{j \neq n} I_j\right)$$

is sufficient to output

$$\tilde{\mathbf{G}}_{n(2)}^{\intercal} = \mathop{\arg\min}_{\mathbf{G}_{n(2)}^{\intercal} \in \mathbb{R}^{R_{n}R_{n+1} \times I_{n}}} \| \mathcal{S}\mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\intercal} - \mathcal{S}\mathbf{X}_{[n]}^{\intercal} \|_{F},$$

such that

$$\Pr\left(\|\mathbf{G}_{[2]}^{\neq n}\tilde{\mathbf{G}}_{n(2)}^{\intercal}-\mathbf{X}_{[n]}^{\intercal}\|_{F}=\left(1\pm\mathcal{O}\left(\varepsilon\right)\right)\min\|\mathbf{G}_{[2]}^{\neq n}\mathbf{G}_{n(2)}^{\intercal}-\mathbf{X}_{[n]}^{\intercal}\|_{F}\right)\geq1-\eta-2^{-\Omega\left(\log\prod_{j\neq n}I_{j}\right)}.$$

Yajie Yu (CQU) Rand-TR 35 / 58

Outline

- Introduction
 - Tensor decompositions
 - Algorithms for TR decomposition
 - "Sketching"
- 2 TR-SRFT-ALS
 - Motivations
 - New findings
 - Algorithm and theoretical analysis
- TR-TS-ALS
 - New findings
 - Algorithm and theoretical analysis
- 4 Numerical Results
 - Synthetic data
 - Real data
- 5 Conclusions

Definition 3.1 (TensorSketch for Subchain Product)

The order N **TensorSketch** matrix $\mathbf{T} = \mathbf{\Omega} \mathbf{D} \in \mathbb{R}^{m \times \prod_{i=1}^{N} I_i}$ is defined based on two hash maps H and S defined below,

$$H: [I_1] \times [I_2] \times \cdots \times [I_N] \to [m]: (i_1, \dots, i_N) \mapsto \left(\sum_{n=1}^N (H_n(i_n) - 1) \mod m\right) + 1,$$

$$S: [I_1] \times [I_2] \times \cdots \times [I_N] \to \{-1, 1\} : (i_1, \dots, i_N) \mapsto \prod_{n=1}^N S_n(i_n),$$

where each H_n for $n \in [N]$ is a 3-wise independent hash map that maps $[I_n] \to [m]$, and each S_n is a 4-wise independent hash map that maps $[I_n] \to \{-1,1\}$. A hash map is k-wise independent if any designated k keys are independent random variables. Specifically, the two matrices Ω and D are defined based on H and S, respectively, as follows,

- $\bullet \quad \Omega \in \mathbb{R}^{m \times \prod_{i=1}^{N} I_i} \text{ is a matrix with } \Omega(j,i) = 1 \text{ if } j = H(i) \ \forall i \in \left[\prod_{i=1}^{N} I_i\right] \text{, and } \Omega(j,i) = 0 \text{ otherwise, } \right]$
- $\bullet \quad \mathbf{D} \in \mathbb{R}^{\prod_{i=1}^{N} I_i \times \prod_{i=1}^{N} I_i} \text{ is a diagonal matrix with } \mathbf{D}(i,i) = S(i).$

Above we use the notation $H(i)=H(\overline{i_1i_2\cdots i_N})$ and $S(i)=S(\overline{i_1i_2\cdots i_N})$, where $\overline{i_1i_2\cdots i_N}$ denotes the little-endian convention.

Yajie Yu (CQU) RAND-TR 37/58

Related works

- Malik, O. A., & Becker, S. (2020). Fast randomized matrix and tensor interpolative decomposition using CountSketch. Advances in Computational Mathematics, 46(6), 76.
 - $\mathbf{P} = \mathbf{A}^{(1)} \odot \mathbf{A}^{(2)} \odot \cdots \odot \mathbf{A}^{(N)}$ for $n \in [N]$.
 - $\bullet \ \mathbf{TP} = \mathsf{FFT}^{-1}\left(\circledast_{n=1}^{N} \mathsf{FFT}\left(\mathbf{S}^{(n)} \mathbf{A}^{(n)}\right) \right).$
- Malik, O. A., & Becker, S. (2018). Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch. Advances in Neural Information Processing Systems, 31.
 - $\mathbf{P} = \mathbf{A}^{(1)} \otimes \mathbf{A}^{(2)} \otimes \cdots \otimes \mathbf{A}^{(N)}$ for $n \in [N]$.
 - $\bullet \ \mathbf{TP} = \mathsf{FFT}^{-1} \left(\left(\bigcirc_{n=1}^{N} \left(\mathsf{FFT} \left(\mathbf{S}^{(n)} \mathbf{A}^{(n)} \right) \right)^\mathsf{T} \right)^\mathsf{T} \right).$
- Pagh Rasmus. (2013). Compressed matrix multiplication. ACM Transactions on Computation Theory (TOCT).
- Diao, H., Song, Z., Sun, W., & Woodruff, D. (2018). Sketching for Kronecker Product Regression and P-splines. International Conference on Artificial Intelligence and Statistics, 1299–1308.
- What about $\mathbf{TG}_{[2]}^{\neq n}$? Recall that

$$\mathcal{G}^{\neq n} = \mathcal{G}_{n+1} \boxtimes_2 \cdots \boxtimes_2 \mathcal{G}_N \boxtimes_2 \mathcal{G}_1 \boxtimes_2 \cdots \boxtimes_2 \mathcal{G}_{n-1}.$$

Yajie Yu(CQU) RAND-TR 38/58

New definition

Definition 3.2 (Slices-Hadamard product)

Let $\mathcal{A} \in \mathbb{R}^{I_1 \times J \times K}$ and $\mathcal{B} \in \mathbb{R}^{K \times J \times I_2}$ be two 3-order tensors, and $\mathbf{A}(j)$ and $\mathbf{B}(j)$ are the j-th lateral slices of \mathcal{A} and \mathcal{B} , respectively. The mode-2 **slices-Hadamard product** of \mathcal{A} and \mathcal{B} is a tensor of size $I_1 \times J \times I_2$ denoted by $\mathcal{A} \boxtimes_2 \mathcal{B}$ and defined as

$$(\mathcal{A} \boxtimes_2 \mathcal{B})(j) = \mathcal{A}(j)\mathcal{B}(j).$$

That is, the j-th lateral slice of $\mathcal{A} \boxtimes_2 \mathcal{B}$ is the classical matrix product of the j-th lateral slices of \mathcal{A} and \mathcal{B} . The mode-1 and mode-3 slices-Hadamard product can be defined similarly.

Yajie Yu (CQU) RAND-TR 39 / 58

New Propositions

Proposition 3.3

Let $\mathcal{A} \in \mathbb{R}^{I_1 \times J_1 \times K}$ and $\mathcal{B} \in \mathbb{R}^{K \times J_2 \times I_2}$ be two 3-order tensors, and $\mathbf{A} \in \mathbb{R}^{M \times J_1}$ and $\mathbf{B} \in \mathbb{R}^{M \times J_2}$ be two matrices. Then

$$(\mathcal{A} \times_2 \mathbf{A}) \boxtimes_2 (\mathcal{B} \times_2 \mathbf{B}) = (\mathcal{A} \boxtimes_2 \mathcal{B}) \times_2 (\mathbf{B}^\intercal \odot \mathbf{A}^\intercal)^\intercal.$$

Proposition 3.4

Let $\mathbf{S}_n = \mathbf{\Omega}_n \mathbf{D}_n \in \mathbb{R}^{m \times I_n}$, where $\mathbf{\Omega}_n \in \mathbb{R}^{m \times I_n}$ and $\mathbf{D}_n \in \mathbb{R}^{I_n \times I_n}$ are defined based on H_n and S_n in Definition 3.1. Let $\mathbf{T} \in \mathbb{R}^{m \times \prod_{i=1}^N I_N}$ be defined in Definition 3.1 and $\mathbf{P} = \mathbf{A}^{(1)} \boxtimes_2 \mathbf{A}^{(2)} \boxtimes_2 \cdots \boxtimes_2 \mathbf{A}^{(N)}$ with $\mathbf{A}^{(n)} \in \mathbb{R}^{R_n \times I_n \times R_{n+1}}$ for $n \in [N]$. Then

$$\mathcal{P} \times_2 \mathbf{T} = \mathit{FFT}^{-1} \left(\bigotimes_{n=1}^{N} \mathit{FFT} \left(\mathcal{A}^{(n)} \times_2 \mathbf{S}_n, [\], 2 \right), [\], 2 \right).$$

Yajie Yu (CQU) RAND-TR 40/58

Algorithm 8 TR-TS-ALS (Proposal)

```
\triangleright \mathbf{G}_n \in \mathbb{R}^{R_n \times I_n \times R_{n+1}} : \mathbf{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}
   1: function \{\mathcal{G}_n\}_{n=1}^N = \text{TR-TS-ALS}(\mathcal{X}, R_1, \dots, R_N, m)
                                                                                                                                                                       \triangleright (R_1, \cdots, R_N) are the TR-ranks
                                                                                                                                                                                           \triangleright m is the embedding size
  2:
                  Define S_i, i.e., the CountSketch, based on H_n and S_n in Definition 3.1, for i \in [N]
  3:
                  for n=1,\cdots,N do
  4:
                         Build the TensorSketch \mathbf{T}_{
eq n} \in \mathbb{R}^{m 	imes \prod_{j 
eq n} I_j}
                         Compute the sketch of X_{[n]}^{\mathsf{T}} \colon \hat{\mathbf{X}}_{[n]}^{\mathsf{T}} \leftarrow \mathbf{T}_{\neq n} \mathbf{X}_{[n]}^{\mathsf{T}}
  6:
7:
8:
9:
                  end for
                  Initialize cores \boldsymbol{\mathcal{G}}_2, \cdots, \boldsymbol{\mathcal{G}}_N
                  repeat
                         for n=1,\cdots,N do
10:
                               Compute \hat{\mathbf{\mathcal{G}}}^{\neq n} = \mathbf{\mathcal{G}}^{\neq n} \times_2 \mathbf{T}_{\neq n} = \mathsf{FFT}^{-1} \left( \bigotimes_{\substack{1 \leq i \leq n+1 \ldots N}} \mathsf{FFT} \left( \mathbf{\mathcal{G}}_i \times_2 \mathbf{S}_n, [\ ], 2 \right), [\ ], 2 \right)
11:
                               Update \mathbf{\mathcal{G}}_n = \arg\min_{\mathbf{\mathcal{Z}}} \|\hat{\mathbf{G}}_{[2]}^{\neq n} \mathbf{Z}_{(2)}^{\intercal} - \hat{\mathbf{X}}_{[n]}^{\intercal}\|_F
                         end for
                  until termination criteria met
                  return \mathcal{G}_1, \cdots, \mathcal{G}_N
15: end function
```

Yajie Yu (CQU) RAND-TR 41/58

Theorem 3.5

For the subchain unfolded matrix $\mathbf{G}_{[2]}^{\neq n} \in \mathbb{R}^{\prod_{j \neq n} I_j \times R_n R_{n+1}}$ and $\mathbf{X}_{[n]}^{\mathsf{T}} \in \mathbb{R}^{\prod_{j \neq n} I_j \times I_n}$ in eq. (2.1), fix $\varepsilon, \eta \in (0,1)$. Then a TensorSketch $\mathbf{T}_{\neq r}$

 $\mathbf{X}_{[n]}^{\mathsf{T}} \in \mathbb{R}^{\prod_{j \neq n} I_j \times I_n}$ in eq. (2.1), fix $\varepsilon, \eta \in (0,1)$. Then a TensorSketch $\mathbf{T}_{\neq n}$ used in Algorithm 8 with

$$m = \mathcal{O}\left(((R_n R_{n+1} \cdot 3^{N-1})((R_n R_{n+1} + 1/\varepsilon^2)/\eta)\right),$$

is sufficient to output

$$\tilde{\mathbf{G}}_{n(2)}^{\mathsf{T}} = \underset{\mathbf{G}_{n(2)}^{\mathsf{T}} \in \mathbb{R}^{R_n R_{n+1} \times I_n}}{\arg \min} \| \mathbf{T}_{\neq n} \mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\mathsf{T}} - \mathbf{T}_{\neq n} \mathbf{X}_{[n]}^{\mathsf{T}} \|_F,$$

such that

$$\Pr\left(\|\mathbf{G}_{[2]}^{\neq n}\tilde{\mathbf{G}}_{n(2)}^{\intercal}-\mathbf{X}_{[n]}^{\intercal}\|_{F}=\left(1\pm\mathcal{O}\left(\varepsilon\right)\right)\min\|\mathbf{G}_{[2]}^{\neq n}\mathbf{G}_{n(2)}^{\intercal}-\mathbf{X}_{[n]}^{\intercal}\|_{F}\right)\geq1-\eta.$$

Yajie Yu (CQU) RAND-TR 42/58

Outline

- Introduction
 - Tensor decompositions
 - Algorithms for TR decomposition
 - "Sketching"
- 2 TR-SRFT-ALS
 - Motivations
 - New findings
 - Algorithm and theoretical analysis
- 3 TR-TS-ALS
 - New findings
 - Algorithm and theoretical analysis
- Mumerical Results
 - Synthetic data
 - Real data
- 5 Conclusions

The first experiment

- generate_low_rank_tensor(sz, ranks, noise, large_elem)
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with entries drawn independently from a standard normal distribution.
 - Set $large_elem$ to increase the coherence;
 - $R_{true} = 10$;
 - sz = [I,I,I] = [500,500,500];
 - ranks = R:
 - $large_elem = 20$;
 - $\mathcal{X} = \mathcal{X}_{ture} + noise\left(\frac{\|\mathcal{X}_{ture}\|}{\|\mathcal{N}\|}\right) \mathcal{N}.$
- [MB21] Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring decomposition. In International Conference on Machine Learning (pp. 7400-7411). PMLR.

Yajie Yu(CQU) RAND-TR 44 / 58

The first experiment

Figure 7: Embedding sizes v.s. relative errors and running time (seconds) of the first synthetic experiment with true and target ranks $R_{true}=R=10$ and different noises.

The second experiment

- ullet generate_sparse_low_rank_tensor(sz, ranks, density, noise)
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with non-zero entries drawn from a standard normal distribution;
 - $R_{true} = 10$;
 - sz = [I,I,I] = [500,500,500];
 - ranks = R;
 - density = 0.05;

The second experiment

Figure 8: Embedding sizes v.s. relative errors and running time (seconds) of the second synthetic experiment with true and target ranks $R_{true}=R=10$ and different noises.

The third experiment

- ullet generate_sptr_tensor(sz, ranks, noise, spread, magnitude)
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with entries drawn independently from a standard normal distribution;
 - spread: How many non-zeros elements are added to each of these first three columns;
 - magnitude: Those non-zero elements are chosen;
 - $R_{true} = 10$;
 - sz = [I,I,I] = [500,500,500];
 - ranks = R:

[LK20] Larsen, B. W., & Kolda T. G. (2020). Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition. arXiv:2006.16438.

Yajie Yu (CQU) RAND-TR 48/58

The third experiment

Figure 9: Embedding sizes v.s. relative errors and running time (seconds) of the third synthetic experiment with true and target ranks $R_{true}=R=10$ and different noises.

The forth experiment

- ullet generate_complex_low_rank_tensor($sz, ranks, noise, large_elem$)
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with entries drawn independently from a standard normal distribution and add imaginary part;
 - Set $large_elem$ to increase the coherence;
 - $R_{true} = 10$;
 - sz = [I,I,I] = [500,500,500];
 - ranks = R;
 - $large_elem = 20$;

The forth experiment

Figure 10: Embedding sizes v.s. relative errors and running time (seconds) of the fourth synthetic experiment with true and target ranks $R_{true}=R=10$ and different noises.

Real data

Dataset	Size	Туре	
Indian Pines	$145 \times 145 \times 220$	Hyperspectral	
SalinasA.	$83 \times 86 \times 224$	Hyperspectral	
C1-vertebrae	$512 \times 512 \times 47$	CT Images	
Uber.Hour ⁶	$183 \times 1140 \times 1717$	Sparse	
Uber.Date	$24 \times 1140 \times 1717$	Sparse	

Table 1: Size and type of real datasets.

Yajie Yu (CQU) RAND-TR 52/58

⁶Larsen, B. W., & Kolda T. G. (2020). Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition. arXiv:2006.16438.

Real data

Method	Indian Pines $(R = 20)$		SalinasA. $(R = 15)$			C1-vertebrae ($R=25$)			
	Error	Time	num	Error	Time	num	Error	Time	num
TR-ALS	0.0263	32.9536		0.0066	4.0225		0.0804	409.7951	
TR-ALS-Sampled	0.0289	13.7424	120	0.0069	2.4166	54	0.0882	128.3391	228
TR-SRFT-ALS	0.0289	12.3571	53	0.0073	1.8510	23	0.0883	101.7646	88
TR-SRFT-ALS (No pre-time)		11.9446			1.7093			101.4037	
TR-TS-ALS	0.0289	12.0229	73	0.0073	2.2868	30	0.0883	156.5089	217

Method	Uber.Hour $(R=15)$		Uber.Date ($R=18$)			
Method	Error	Time	num	Error	Time	num
TR-ALS	0.7530	869.1631		0.3864	1452.1900	
TR-ALS-Sampled	0.8246	64.7240	230	0.4226	159.1936	320
TR-SRFT-ALS	0.8272	39.0307	40	0.4246	51.3584	46
TR-SRFT-ALS		21.9817			48.9433	
(No pre-time)		21.5017			40.5455	
TR-TS-ALS	0.8274	45.3829	47	0.4239	113.8542	147

Yajie Yu (CQU) RAND-TR 53/5

Outline

- Introduction
 - Tensor decompositions
 - Algorithms for TR decomposition
 - "Sketching"
- 2 TR-SRFT-ALS
 - Motivations
 - New findings
 - Algorithm and theoretical analysis
- 3 TR-TS-ALS
 - New findings
 - Algorithm and theoretical analysis
- 4 Numerical Results
 - Synthetic data
 - Real data
- Conclusions

Conclusions

- We propose two randomized algorithms for TR decomposition, TR-SRFT-ALS and TR-TS-ALS.
- We propose two new tensor products and find their interesting properties.
- Numerical experiments are provided to test the proposed methods.

Thanks!

References I

- [ACP+20] S. Ahmadi-Asl, A. Cichocki, A. H. Phan, M. G. Asante-Mensah, M. M. Ghazani, T. Tanaka, and I. Oseledets, Randomized algorithms for fast computation of low rank tensor ring model, Machine Learning: Science and Technology 2 (2020), no. 1, 011001 (en).
 - [BBK18] C. Battaglino, G. Ballard, and T. G. Kolda, A Practical Randomized CP Tensor Decomposition, SIAM Journal on Matrix Analysis and Applications 39 (2018), no. 2, 876–901.
 - [CW17] K. L. Clarkson and D. P. Woodruff, Low-Rank Approximation and Regression in Input Sparsity Time, Journal of the ACM 63 (2017), no. 6, 54:1–54:45.
 - [JKW20] R. Jin, T. G. Kolda, and R. Ward, Faster Johnson-Lindenstrauss Transforms via Kronecker Products, Information and Inference: A Journal of the IMA (2020), iaaa028, available at 1909.04801 (en).
 - [LK20] B. W. Larsen and T. G. Kolda, Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition, arXiv:2006.16438 (2020), available at 2006.16438.

References II

- [MB21] O. A. Malik and S. Becker, *A sampling-based method for tensor ring decomposition*, Proceedings of the 38th international conference on machine learning, 2021, pp. 7400–7411.
- [YLCZ19] L. Yuan, C. Li, J. Cao, and Q. Zhao, Randomized Tensor Ring Decomposition and Its Application to Large-scale Data Reconstruction, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 2127–2131.
- [ZZX⁺16] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, *Tensor Ring Decomposition*, arXiv:1606.05535 [cs] (2016), available at 1606.05535.