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Introduction Tensor decompositions
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Figure 1: Graphical representation of multiway array (tensor) data.
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CP & Tucker decompositions

o CANDECOMP/PARAFAC (CP) decomposition.

o The CP tensor decomposition aims to approximate an order-IN tensor as
a sum of R rank-one tensors;

o XrXx =" aVoaPo...0ca™ = [[AD AD ... AW

o O(NIR) parameters: is linear to the tensor order N.
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CP & Tucker decompositions

o CANDECOMP/PARAFAC (CP) decomposition.

o The CP tensor decomposition aims to approximate an order-IN tensor as
a sum of R rank-one tensors;
s X~ X =" alVoaPo...0a® = [[AD A® ... A
o O(NIR) parameters: is I|near to the tensor order N.
@ Tucker decomposition

e The Tucker decomposition decomposes a tensor into a core tensor
multiplied (or transformed) by a matrlx along each mode;

e X X=Gx AW ... xy AN = [[G;AD) ... AM]];

o O(NIR+ RN) parameters: is exponentlal to the tensor order N.
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CP & Tucker decompositions

o CANDECOMP/PARAFAC (CP) decomposition.

o The CP tensor decomposition aims to approximate an order-IN tensor as
asum of R rank one tensors;
s xxX =% acao. 0al = [[A, A, ... AN
o O(NIR) parameters: is I|near to the tensor order N.
@ Tucker decomposition

e The Tucker decomposition decomposes a tensor into a core tensor
multiplied (or transformed) by a matrlx along each mode;
e X X=Gx AW ... xy AN = [[G;AD) ... AM]];
o O(NIR+ RN) parameters: is exponentlal to the tensor order N.
@ Some limitations

CP Its optimization problem is difficult; it is difficult to find the optimal
solution and CP-rank (NP-hard);
Tucker Its number of parameters is exponential to tensor order. (Curse of
Dimensionality)
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Introduction Tensor decompositions

Tensor Train (TT) decomposition

chR)  (Rxlyxhy) LAY (Ry. <1y <D

Figure 3: TT/MPS decomposition of an N-th order tensor X.

@ Slice representation:

X(i1, - ,in) = G1(11)G1(i2) - - - Gn(in)
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Introduction Tensor decompositions

Tensor Train (TT) decomposition

@ Limitations of TT decomposition:

e The constraint on TT-ranks, i.e., Ry = Ry, = 1, leads to the limited
representation ability and flexibility;

e TT-ranks always have a fixed pattern, i.e., smaller for the border cores
and larger for the middle cores, which might not be the optimum for
specific data tensor;

e The multilinear products of cores in TT decomposition must follow a
strict order such that the optimized TT cores highly depend on the
permutation of tensor dimensions. Hence, finding the optimal
permutation remains a challenging problem.
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Introduction Tensor decompositions

Tensor Ring (TR) decomposition
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Figure 4: TR decomposition of an N-th order tensor X.

Yajie Yu (CQU) RAND-TR



Introduction Tensor decompositions

Tensor Ring (TR) decomposition

@ Scalar representation:

Ry N
X(ila" : )ZN) - Z H gn TnalnaTrH»l) Rl = RN+1
sry=1n=1

@ Slice representation:
X (i1, in) = Tr{G1(i1)G1(i2) - - - Gn(in) };
@ Tensor representation:
X =Tr(Gi x'G?> x!' - x'Gy);

e O (NIRQ) parameters: is linear to the tensor order N.
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Tensor Ring (TR) decomposition

@ Advantages of TR decomposition:

e TR model has a more generalized and powerful representation ability
than TT model, due to relaxation of the strict condition Ry = Ry4+1 =1
in TT decomposition. In fact, TT decomposition can be viewed as a
special case of TR model;

o TR model is more flexible than TT model, because TR-ranks can be
equally distributed in the cores;

e The multilinear products of cores in TR decomposition don't need a
strict order, i.e., the circular dimensional permutation invariance.

e TR-ranks are usually smaller than TT-ranks because TR model can be
represented as a linear combination of TT decompositions whose cores
are partially shared.

@ Batselier K. (2018). The Trouble with Tensor Ring Decompositions. arXiv:1811.
03813.
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Classical algorithms for TR decomposition

Algorithm 1 TR-SVD [ZZX*16]

1: function [{G., }N—1,R1,--- , Ry]= TR-SVD(X, <))

2: Compute truncation threshold 65 for k = 1 and k > 1
3: Choose one mode as the start point (e.g., the first mode) and obtain the 1-unfolding matrix X -1~
4. Low-rank approximation by applying §1-truncated SVD: X 1> = USVT + E;
5: Split ranks Ry, Ro by

R1 — Ra||, s.t.ranks, (X

erﬂ’llré 1R 2ll, s.t. ranks, (X<1>)

6: G1 < permute(shape(U, [I1, R1, R2]), [2,1,3])
7: G>1 « permute(shape(SVT, [Ry, Ry, H?:2]), [2,3,1])
8 fork=2-.-,N—1do
9: G>F~1 = reshape(G~F 1, [Ry Iy, Iy - - - INR1])
10: Compute . -truncated SVD:

g7kl —uUusVT 1+ E,
11: Rpqq + ranks, (67F~1)
12: Gy, < shape(U, [Ry, Iy, Ri 1))
13: G  shape(ZVT, [Rpy1, [T 4y 15, Ra))
14: end for
15: return G1,--- , G and the TR-rank Ry, -+ , Ry

16: end function

Yajie Yu (CQU)



Introduction Algorithms for TR decomposition

Classical algorithms for TR decomposition

Algorithm 2 TR-ALS [ZZX*16] 1

1: function {G,})_;= TR-ALS(X,Ri,---,Rn)
2 Initialize cores G5, -+ ,GNn

3 repeat

4 forn=1,---,N do

5 Compute Gé]" from cores

6: Update G,, = argmin g HGF;]"ZZQ) = X0, llF
7 end for

8 until termination criteria met

9 return G, . Gn

0:

10: end function

[ZZX+ 16] Zhao, Q., Zhou, G., Xie, S., & Zhang, L., Cichocki, A. (2016). Tensor Ring Decomposition. ArXiv:1606.05535.

"More details: (1) ALS with adaptive ranks and (2) block-wise ALS
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Introduction Algorithms for TR decomposition

Randomized algorithms for TR decomposition

Algorithm 3 rTR-ALS [YLCZ19]
1: function {G,}»_,= TR-RALS(X,R1, -+ ,Rn, K1, - ,KN)

2: forn=1,---,N do
3: Create matrix M € R;+,,I; X Ky, following the Gaussian distribution.
4: Compute Y = X, M > random projection
5: Qn, | =QR(Y) > economy QR decomposition
6: P+ X xn QL
7 end for
8: Obtain TR factors [Z,,] of P by TR-ALS or TR-SVD
9: forn=1,--- N do
10: gn = Zn X2 Qn
11: end for

12: return Gy, - ,GN
13: end function

[YLCZ19] Yuan, L., Li, C., Cao, J., & Zhao, Q. (2019). Randomized Tensor Ring Decomposition and its Application to Large-scale
Data Reconstruction. ICASSP, 2127-2131.

[ACP+20] Ahmadi-Asl, S., Cichocki, A., Phan, A. H., Asante-Mensah, M. G., Ghazani, M. M., Tanaka, T., & Oseledets, |. (2020).
Randomized algorithms for fast computation of low rank tensor ring model. Machine Learning: Science and Technology,
2(1), 011001.
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Introduction Algorithms for TR decomposition

Randomized algorithms for TR decomposition

Algorithm 4 TR-ALS-Sampled [MB21]

1: function {G,, }N_, = TR-ALS-SAMPLED(X, Ry, - - - , Ry)
2: Initialize cores Go, -+ ,GN
3: Using the leverage scores to compute distributions p(z), tee, p(N) without explicitly forming the subchain unfold
4:
b: form=1,.-.--, N do
6: Set sample size J
7: Draw sampling matrix S ~ D(J, q*")
8: Compute g¢” = SST(idxs,Gn4+1,9N,91,9n—1) and Gé]n
. T — T
9: Compute X[n] = SX[n]
10: Update G,, = argming HG[;;]”/Z&) - XF;L] [l F
11: Update n-th distribution p(")
12: end for
13: until termination criteria met
14: retun G1,--- ,GN
15: end function
[MB21] Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring decomposition. In International

Conference on Machine Learning (pp. 7400-7411). PMLR.
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Introduction Algorithms for TR decomposition

Randomized algorithms for TR decomposition

Algorithm 5 Sampled Subchain Tensor (SST) [MB21]

1: function G7"= SST(idxs,Gn+1,9n,G1,Gn-1) > G, € REnXInXRni1
> idxs € R™*®™ =Y s from the set of tuples {igll, e ,is\],), z';]), e ,igfll
for j € [m)]

> idxs is retrieved from the sampling matrix S € R™ITzn I or the specific
sampling with given probabilities
2: Let g?" be a tensor of size R,4+1 X m X Ry, where every lateral slice is an
R,41 X R, identity matrix

return gf”
end function

3: fork=n+1,---,N,1,--- ;' n—1do

4: G7ls « Grls, idxs(:, k), 1)

5: GL" «— GL" ®s gﬁ';s > see Definition 3.2 for @Es.
6: end for

7

8:
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Introduction “Sketching”

Some sketching techniques

Uniform
Sampling Based on norm
Importance
Based on leverage scores
. Kronecker Gaussian
] ) Gaussian
Randomized Algorithms Khatri-Rao Gaussian

Kronecker FJLT

Projection ¢ SRFT/SRHT
Khatri-Rao FJLT

TensorSketch

CountSketch
Higher-order CountSketch
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SRFT

Definition 1.1 (SRFT)

The SRFT is constructed as a matrix of the form

® = SFD,

where
e S € R™*N = m random rows of the N x N identity matrix;
o F € CN*N = (unitary) discrete Fourier transform of dimension N;

o D € RV*N — diagonal matrix with diagonal entries drawn uniformly
from {+1,—1}.
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Kronecker SRFT (KSRFT)

Definition 1.2 (KSRFT)
The KSRFT is constructed as a matrix of the form

1
=S| FD;|,
j=D

where
o S € R™N = m random rows of the N x N identity matrix with
D .
N =[liziny:
e F;j € C*™ = (unitary) discrete Fourier transform of dimension n;;

e D; € R%*™ = diagonal matrix with diagonal entries drawn uniformly
from {+1,—1}.

[BBK18] Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized CP Tensor Decomposition. SIMAX, 39(2),
876-901.

[JKW20] Jin, R, Kolda, T. G., & Ward, R. (2021). Faster Johnson-Lindenstrauss transforms via kronecker products. Information
and Inference: A Journal of the IMA, 10(4), 1533-1562.

Yajie Yu (CQU) RAND-TR 18/58




Introduction “Sketching”

CountSketch

Definition 1.3 (CountSketch)
The CountSketch is constructed as a matrix of the form

o = OD,

where
o Q€ R™N = a matrix with Q(j,4) = 1 if j = h(i), Vi € [N] and
Q(j,1) = 0 otherwise, where h : [N] — [m] is a hash map such that
Vi € [N] and Vj € [m], Pr[h(i) = j] = 1/m;
o D € RV*N — diagonal matrix with diagonal entries drawn uniformly
from {+1,—1}. )

[CW17] Clarkson K L, & Woodruff D P. (2017). Low-rank approximation and regression in input sparsity time. Journal of the
ACM, 63(6), 1-45.
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TensorSketch

Definition 1.4 (TensorSket

N
The order N TensorSketch matrix T = QD € ]Rmxl—[izl I; is defined based on two hash maps H and S defined below,

N
H:[I1) X [T2] X - X [In] = [m] & (i1, ..« in) = [ S0 (Hn(in) —1) mod m | + 1,

n=1
N
S:[] X [I2] X - X [IN] = {=1,1} : G1, .-, in) = [] Sn(in),
n=1
where each H,, for n € [N] is a 3-wise independent hash map that maps [I,,] — [m], and each S, is a 4-wise independent
hash map that maps [I,,] — {—1, 1}. A hash map is k-wise independent if any designated k keys are independent random
variables. Specifically, the two matrices €2 and D are defined based on H and S, respectively, as follows,

N 1.
@ 0 c R™*Ili=1 Ti is a matrix with Q(j,4) = 1if j = H(i) Vi € [1‘[{‘;1 Ii}, and £2(j, i) = 0 otherwise,

N N
@ D e rlli=1 1 XIli=1 Ti is a diagonal matrix with D(4, i) = S(4).

Above we use the notation H (i) = H(i1ig ---ipn) and S(i) = S(i1i2 -+ -ipn ), where 4142 - - - iy denotes the big-endian
convention.

v
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@ New findings
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Motivation: CP-ALS

@ Classical CP
CP-ALS
argmin |Z™MAT - XT |-
2 —ANO- QA OAL OO AL
e Randomized CP in [BBK18] 2
Rand-CP

1 1
argmin ||S ( R ijj> ZMAT -8 ( X ]-']-DJ) X7 lp

A ) g ) g
" Jj=N,j#n J=N,j#n

7 (n 1 n !
Zm = (®j:N#n ijj) 20 = Qjn jzn(FiD;A;).

2[BBK18] Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized
CP Tensor Decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2),
876-901.
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TR-SRFT-ALS Motivations

Ideas

@ Original problem: TR-ALS

argmlnHG#nGT( 2) X[TH}HF (2.1)

n(2)

@ Reduced problem: Sketched TR-ALS

argmin | SG'GT ) — SXT ||

G (2)

n(2)

o ldeas
e Avoid forming S explicitly.
o Avoid forming Gé]” explicitly.

o Avoid the classical matrix multiplication of & and Géf directly.

Yajie Yu (CQU) RAND-TR



TR-SRFT New findings

New findings

1 Mixing the rows of GF;T is equivalent to mixing the lateral slides of G7", i.e.,
SGF;L = (g;&n X9 S)[Q]

BLUE: Process T

o
[
—
Rotate

& gl

SGF € R R

PINK: Process IT

Figure 5: Illustration of the transformation from Process | to Process II.

2 G7™ may be written as a Kronecker-like or KR-like product of TR-cores.
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TR-SRFT-ALS New findings

New definition

Definition 2.1 (Subchain product)

Let A € RIX1XEK and B € REX/2X12 e two 3-order tensors, and A(j)
and B(j2) be the ji-th and js-th lateral slices of A and B, respectively.
The mode-2 subchain product of A and B is a tensor of size

I x J1Jy x I denoted by A Xy B and defined as

(AR, B)(j1j2) = A(j1)B(j2)-

That is, with respect to the correspondence on indices, the lateral slices of
A Xy B are the classical matrix products of the lateral slices of A and B.
The mode-1 and mode-3 subchain products can be defined similarly.

Therefore, G7™ can be rewritten as

G =G Ky My Gy NG Ky Ko Gy 1. (2.2)

Yajie Yu (CQU) RAND-TR



TR-SRFT-ALS New findings

New proposition

SG = (97" x2 )y
=((Gnt1 W W G K Gy Wy -+ - Wy Gro1) X2 S)py

Proposition 2.2

Let A € ROLXNXEK a4 B € REX2XI2 pe two 3-order tensors, and
A € REX1 gpnd B € RE2%72 pe two matrices. Then

(A X9 A) X (B X9 B) = (A&Q B) X9 (B®A)

Yajie Yu (CQU) RAND-TR



TR-SRFT-ALS Algorithm and theoretical analysis

Idea on algorithm

@ Choose the “S".
o Let S = SFD, where

S = S ® ]:ij
j=n—1,-- 1,N,--- n+1
o Thus,

arg min HSfDG?;”GT — SFDXT (2.3)

. 2 “ne2) ]

)
F

[BBK18] Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized CP Tensor Decomposition. SIAM Journal on
Matrix Analysis and Applications, 39(2), 876-901.
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Details

@ The first term in eq. (2.3), S]—"DG?;]":
Step 1 (Mixing step) Using Proposition 2.2 and eq. (2.2)
G™" = G*" x, FD
= (Gnt1 X2 (Frt1Dn1))Xo
<Ny (Gn X2 (FnDn)) K (G1 X2 (F1D1))Xo
- Mo (Gno1 X2 (Fne1Dno1)).

. #n __ A#n
ie. .7:DG[2] = G[Q].

Step 2 (Sampling step) According to the sampling method in Algorithm 5, we have
A En

G %28 =(Gnt1 X2 (Snt1Fnt1Dny1))HEe
< M2 (OGN X2 (SNFNDyw)) B2 (G1 X2 (S1F1D1))He

<o B2 (Gro1 X2 (Sp—1Fn—1Dn_1)),

T
using Proposition 3.3, we have S = (O‘j?’n_l,;f, SJT)
-

[MB21] Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring decomposition. In International
Conference on Machine Learning (pp. 7400-7411). PMLR.
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Details

@ The second term in eq. (2.3), S]-"DX[TH]:

o Let i’ =X X1 .FlDl X9 .FQDQ"' XN ]:NDN
o The second term is equivalent to

SXT

T (DLF)T.

@ Rewrite eq. (2.3) as

argmin || (SG7" G, — SXTn (DnF3) " F-
G ( (2] ) 2 ( [ })

Yajie Yu (CQU) RAND-TR



Algorithm

Algorithm 6 TR-SRFT-ALS (Proposal)

1: function {G,}Y_,= TR-SRFT-ALS(X, Ry, -+ ,Rn,m > G, € REnXInXEnp1. x c glix-xIN
n=1 N
> (Ryp, -+, RpN) are the TR-ranks
> m is the uniform sampling size
2: Initialize cores G2, -+ , G N
3: Define random sign-flip operators D ; and FFT matrices F;, for j € [N
J J
4. Mix cores: Gy, <~ Gy Xg FnDp, forn=2,--- N
5: Mix tensor: X < X x1 F1D1 X3 FoDg--- xn FNDn
6: repeat
7: forn=1,---, N do
8: Define sampling operator S € R L0 1
9: Retrieve idxs from S N R N
10: G%" =5ST(dxs, Gpy1s---»GN G1, - s Gn1)
: T T *\T
11: X, ¢ SXT) (DnFy)
12: Update G,, = arg min z HG;;[Z]Z.(FZ) — X;[n] || 7 subject to G,, being real-valued
13: Gn + Gn X2 FnDn
14: end for
15: until termination criteria met
16: retun G, .- ,GN

17: end function

Yajie Yu (CQU)



TR-SRFT-ALS Algorithm and theoretical analysis

Premix

°
. A #EN T T *
argmin || (SG,," ) G) oy — (SX] ) (DnFy,) Tl F-
G ( [2] ) (2) ( [ })
@ Rewrite it as

arg min || <Séé]n> G:L(2) (FnDn)" — SX[Tn]HR
G (2)

o Let Gn(2) = annGn@)

arg min | (Séé]n) GL(Z) — <SX[Tn]) | -
Gn(2)

Solve the problem above to get Qn first and then recover the original
cores G,,.

Yajie Yu (CQU) RAND-TR



Algorithm

Algorithm 7 TR-SRFT-ALS-Premix (Proposal)

1:

10:

LoNQaOTRwWNn

function {G,, }N_ | = TR-SRFT-ALS-PREMIX(X, Ry, - - - , Ry, m) > G, € ChEnXInXEniy,
X c cli X XIN
> (Ry,--- ,Rpy) are the TR-ranks
> m is the uniform sampling size
Define random sign-flip operators D ; and FFT matrices F;, for j € [N]

Mix tensor: X < X x1 F1Dj xo FaDs--- xny FNDn

Initialize cores G, - -+ , G N
repeat
forn=1,-.--,N do

Define sampling operator S € R ¥ Ljn 1
Retrieve idxs from S

67" = SST(idxs, Gpy1s- - ON G1s- s Gn_1)
XT «— sXT
S(n) [n]

5 o AFEN T T
Update G,, = argming HGs[z]Z(z) - XS["]“F

end for
until termination criteria met
forn=1,-.-., N do
Unmix cores: G, < Gy X2 D, F}
end for
retun G1,--- ,GN
end function

Yajie Yu (CQU)



Some remarks

e Like the algorithms for CP decomposition given in [BBK18]3, but with
new tensor product and property;

e Compared with the method in [MB21]*, our method may work better
for some special data, such as for the data with core tensors may
include outliers;

e F,;D; can be any suitable randomized matrices: CountSketch,
rTR-ALS®, unified form.

3Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A Practical Randomized CP
Tensor Decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2),
876-901.

*Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring
decomposition. In International Conference on Machine Learning (pp. 7400-7411).
PMLR.

*Yuan, L., Li, C., Cao, J., & Zhao, Q. (2019). Randomized Tensor Ring Decomposition
and its Application to Large-scale Data Reconstruction. ICASSP, 2127-2131.
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TR-SRFT-ALS Algorithm and theoretical analysis

[[lustration

g7
Xy
(2% G, o Gn1 R
TR-CS-AL o e EH2
rTR-ALS [42]
Gnt1 X2 Snt1 Gn x2Sy G1 %281 Grn-1 X2 8n-1
TR-KSRFT-ALS (Proposal,
TR-TS-ALS (Proposal)
TR-ALS-Sampled [30]
Gnt1 X2 Sni1 Gn x2Sy Gi1x28:1 Gno1 %2851

Figure 6: lllustration of how to efficiently construct G7™ x5 S by sketching the
core tensors.
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Theoretical analysis

Theorem 2.3

For the subchain unfolded matrix G[;é] e Rli#n Li X Bnfing1 5ng XE' ] € RILi#n 1 X In eq. (2.1), denote

'ra.nk(G;M') =7 < RpRpyq and fixe,n € (0, 1) such that Hﬁén I; < 1/€" with integer v > 2. Then a sketching
matrix S used in Algorithm 6 and Algorithm 7, i.e.,

T

_ m X[, i
S = ©) sT R (FDj|ec j#n i
j=n—1,---,1, j=n-—1, 1,
N,~-~,n+1 N,«»«,n+1

with

m =0 (Eil'rz(Nil)l 20 3( )log (*log( )) log H I; )
j#n

is sufficient to output

&T = arg min SGZEMGT . — SXT ||F,
" T L ISGL) G2 L
n(2)€
such that
7Q(log]_[‘ 1)
PrIGH'GT o) — X[ llr = 1 £ O () min |G GT ) — X |llF) 21— 71— g#n 13),

Yajie Yu (CQU)
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TensorSketch

Definition 3.1 (TensorSketch for Subchain Produ

N .
The order N TensorSketch matrix T = QD € r™*Ili=1 1i is defined based on two hash maps H and S defined below,

N
H:[I1] X [I2] X - x [IN] = [m] : (i1, ..,iN) — (Z(Hn(in)—l) modm) +1,

n=1
N
S:[Iq] x [T2] X -+ x [In] = {=1,1} : (i1, ... ,in) = [] Sn(in),
=i

where each Hy, for n € [N] is a 3-wise independent hash map that maps [I,,] — [m], and each S, is a 4-wise independent
hash map that maps [I,,] — {—1,1}. A hash map is k-wise independent if any designated k keys are independent random
variables. Specifically, the two matrices €2 and D are defined based on H and S, respectively, as follows,

N
@ @ e R™¥Ili=1 1i is a matrix with Q(j,4) = 1if j = H(i) Vi € [ & 1} and ©(j, i) = O otherwise,

N N
@ D e rlli=1 LixIli=1 Ti js 5 diagonal matrix with D (4, %) = S(%).

Above we use the notation H (i) = H(i1i2 - - - i) and S(i) = S(i1%2 - - - i), where i143 - - - i)y denotes the
little-endian convention.
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TR-TS-ALS New findings

Related works

@ Malik, O. A., & Becker, S. (2020). Fast randomized matrix and tensor interpolative
decomposition using CountSketch. Advances in Computational Mathematics, 46(6), 76.
o P=AMoAD o ...0 AW for n € [N].
o TP = FFT ' (®)_,FFT (S(AM)).
@ Malik, O. A., & Becker, S. (2018). Low-Rank Tucker Decomposition of Large Tensors
Using TensorSketch. Advances in Neural Information Processing Systems, 31.
o P=AWg AP g ...0 AN forn € [N].
T
o TP = FFT" (O, (FFT (S™AM)T)7).
@ Pagh Rasmus. (2013). Compressed matrix multiplication. ACM Transactions on
Computation Theory (TOCT).

@ Diao, H., Song, Z., Sun, W.,& Woodruff, D. (2018). Sketching for Kronecker Product
Regression and P-splines. International Conference on Artificial Intelligence and Statistics,
1299-1308.

@ What about TGEI? Recall that

G =G 1Ky Ko G Ko G Ky R Gy
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TR-TS-ALS New findings

New definition

Definition 3.2 (Slices-Hadamard product)

Let A € RIXI*E and B € REX/*12 be two 3-order tensors, and A(j)
and B(j) are the j-th lateral slices of A and B, respectively. The mode-2
slices-Hadamard product of A and B is a tensor of size I} x J X Iy
denoted by A ®s B and defined as

(A2 B)(j) = A()B()-

That is, the j-th lateral slice of A &y B is the classical matrix product of
the j-th lateral slices of A and B. The mode-1 and mode-3 slices-
Hadamard product can be defined similarly.
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TR-TS-ALS New findings

New Propositions

Proposition 3.3

Let A € ROLXNXEK apd B € REX2XI2 pe two 3-order tensors, and
A € RM*N1 and B € RM*2 pe two matrices. Then

(A X9 A) E3D) (B X9 B) = (Agg B) X9 (BT @AT)T.

| \

Proposition 3.4

Let S, = Q,D, € R™*I" where Q,, € R™*!n and D,, € R"*In are
defined based on H,, and S,, in Definition 3.1. Let T € R™*ILL IV pe
defined in Definition 3.1 and P = AL Ky A® X, - .- Ky AN with
A ¢ REnxInxBnt1 for n e [N]. Then

P xaT = FFT L (m, I, FFT (A™ %2 8,,(1,2) ,[1,2)
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Algorithm

Algorithm 8 TR-TS-ALS (Proposal)

1:

10:

LN G wh

function {G,, }N_, = TR-TS-ALS(X, Ry, - - , Ry, m)

n=1""

> G, € R XInXRnt1, ¢ gl1x-xIy
> (Ry,- -+, Ry) are the TR-ranks
> m is the embedding size

Define Sj, i.e., the CountSketch, based on H,, and S, in Definition 3.1, for j € [N]

forn=1,---,N do
Build the TensorSketch T, € R™*Ili#n 1

Compute the sketch of X[Tn]: )A(.[rn] — T¢nXE’n]

end for
Initialize cores Ga,--- , G N
repeat

forn=1,---,N do

—1

Compute §7" = G7" x5 Tuyp = FFT™1 (@, S 1L (FFT (G5 x2 8, [1,2) 4 (1, 2)

_ . AFENZT X T
Update G, = argming HG[Q] 4 X[n] e

(2)
end for
until termination criteria met
retun G, ,GN

end function
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TR-TS-ALS Algorithm and theoretical analysis

Theoretical analysis

Theorem 3.5

For the subchain unfolded matrix Gé]” € RlLzn lixEnBnt1 gpg

X7, € RILz#n L% In i eq. (2.1), fixe,n € (0,1). Then a TensorSketch T4,
used in Algorithm 8 with

m = O ((RoRnt1 - 3V D ((RyRus1 +1/€%)/n)

is sufficient to output

Gsz(2) = arg min HT?fnGérGL(Q) = T7,an[Tn] |7,
G] g R Rnt1XIn

such that

Pr (G GT o) = XTyllr = (1 O () min | GF Gl o) = X[, llr) 21—,

v
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Outline

e Numerical Results
@ Synthetic data
@ Real data
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Numerical Results = Synthetic data

The first experiment

@ generate_low_rank_tensor(sz, ranks, noise, large_elem)

o Create 3 cores of size Ripye X I X Rypye With entries drawn
independently from a standard normal distribution.

e Set large_elem to increase the coherence;
o Ripye = 10;

e sz = [I,I,I]= [500,500,500];

e ranks = R,

o large_elem = 20;

o X = X,yre + noise (”Tﬁ-ﬂe—“) N.

[MB21] Malik, O. A., & Becker, S. (2021, July). A sampling-based method for tensor ring decomposition. In International
Conference on Machine Learning (pp. 7400-7411). PMLR.
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Numerical Results Synthetic data

The first experiment

: O 3

(a) noise =0 (b) noise = 0.01 (c) noise =0.1

Figure 7: Embedding sizes v.s. relative errors and running time (seconds) of the
first synthetic experiment with true and target ranks Ry, = R = 10 and different

noises.
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Numerical Results = Synthetic data

The second experiment

@ generate_sparse_low_rank_tensor(sz, ranks, density, noise)

o Create 3 cores of size Ripye X I X Rypye With non-zero entries drawn
from a standard normal distribution;

° Rtrue = 10,

e sz = [I,I,I]= [500,500,500];
o ranks = R,

e density = 0.05;
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Numerical Results Synthetic data

The second experiment

Relative crror

JEPPEPRETES S JOPPIPPPTRETT TR L

(a) noise =0 (b) noise = 0.01 (c) noise =0.1

Figure 8: Embedding sizes v.s. relative errors and running time (seconds) of the
second synthetic experiment with true and target ranks Ry = R = 10 and
different noises.
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The third experiment

@ generate_sptr_tensor(sz, ranks, noise, spread, magnitude)
o Create 3 cores of size Ripye X I X Rypye With entries drawn
independently from a standard normal distribution;
e spread: How many non-zeros elements are added to each of these first
three columns;

e magnitude: Those non-zero elements are chosen;
o Ripye = 10;

e sz = [I,I,I]= [500,500,500];

e ranks = R;

[LK20] Larsen, B. W., & Kolda T. G. (2020). Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition.
arXiv:2006.16438.
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Numerical Results Synthetic data

The third experiment

Relative error

PUPETRRERE A4S

UUERRERE RS

PPIFPRFPREEE L S 2t

(a) noise =0 (b) noise = 0.01 (c) noise =0.1
Figure 9: Embedding sizes v.s. relative errors and running time (seconds) of the
third synthetic experiment with true and target ranks Ry, = R = 10 and

different noises.
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Numerical Results = Synthetic data

The forth experiment

@ generate_complex_low_rank_tensor(sz, ranks, noise, large_elem)

o Create 3 cores of size Ripye X I X Rypye With entries drawn
independently from a standard normal distribution and add imaginary

part;
e Set large_elem to increase the coherence;
o Ripye = 10;
e sz = [I,I,I]= [500,500,500];
e ranks = R;
e large_elem = 20;
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Numerical Results = Synthetic data

The forth experiment

(a) noise =0 (b) noise = 0.01 (c) noise =0.1

Figure 10: Embedding sizes v.s. relative errors and running time (seconds) of the
fourth synthetic experiment with true and target ranks Ry, = R = 10 and
different noises.
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Real data

Dataset Size Type
Indian Pines 145 x 145 x 220 | Hyperspectral
SalinasA. 83 x 86 x 224 Hyperspectral

Cl-vertebrae 512 x 512 x 47 CT Images
Uber.Hour® | 183 x 1140 x 1717 Sparse
Uber.Date 24 x 1140 x 1717 Sparse

Table 1: Size and type of real datasets.

SLarsen, B. W., & Kolda T. G. (2020). Practical Leverage-Based Sampling for Low-
Rank Tensor Decomposition. arXiv:2006.16438.
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Real data

Method Indian Pines (R = 20) SalinasA. (R = 15) Cl-vertebrae (R = 25)
Error Time num Error Time num Error Time num
TR-ALS 0.0263 32.9536 0.0066 4.0225 0.0804 409.7951
TR-ALS-Sampled 0.0289 13.7424 120 0.0069 2.4166 54 0.0882 128.3391 228
TR-SRFT-ALS 0.0289 12.3571 53 0.0073 1.8510 23 0.0883 101.7646 88
TR-SRFT-ALS 11.9446 1.7093 101.4037
(No pre-time)
TR-TS-ALS 0.0289 12.0229 73 0.0073 2.2868 30 0.0883 156.5089 217
Method Uber.Hour (R = 15) Uber.Date (R = 18)
Error Time num Error Time num
TR-ALS 0.7530 869.1631 0.3864 1452.1900
TR-ALS-Sampled 0.8246 64.7240 230 0.4226 159.1936 320
TR-SRFT-ALS 0.8272 39.0307 40 0.4246 51.3584 46
TR-SRFT-ALS 21.9817 48.9433
(No pre-time)
TR-TS-ALS 0.8274 45.3829 47 0.4239 113.8542 147
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Outline

e Conclusions
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Conclusions

Conclusions

© We propose two randomized algorithms for TR decomposition,
TR-SRFT-ALS and TR-TS-ALS.

@ We propose two new tensor products and find their interesting
properties.

© Numerical experiments are provided to test the proposed methods.
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Conclusions

Thanks!
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